Perkin 1 Abstracts: Natural Product Synthesis

PERKIN

Robert Narquizian and Jens Kaufmann

azepinoindoles.

H. Shinohara, T. Fukuda and M. Iwao, Tetrahedron, 1999, 55, 10989.

Department of Chemistry, University of Glasgow, Glasgow, UK G12 8QQ

Perkin 1 Abstracts: Natural Product Synthesis aims to highlight syntheses that have been recently published. It includes brief descriptions of biological activity and key steps. A more comprehensive list of Natural Product syntheses and isolations can be found in Natural Product Updates

5-F _{2t} -Isoprostane	
Biological activity: hormonal activity.	QU
Key steps: syntheses of the four enantiomerically pure diastereoisomers of the target were achieved using a lipase-catalysed resolution of a racemic diol.	HO OH CO ₂ H
D. F. Taber, K. Kanai and R. Pina, J. Am. Chem. Soc., 1999, 121, 7773.	
AAL-toxin TA ₁	
Biological activity: (a) a host-specific toxin from Alternaria alternata f. sp. lycopersici, a causal fungus of tomato stem canker; (b) reproduces similar symptoms to those of the disease for susceptible genotypes of tomato leaves in concentrations less than 10 ng mL ⁻¹ . Key steps: (a) Sharpless asymmetric epoxidation; (b) condensation of a lactone with an acetylide; (c) palladium-catalysed deoxygenation.	HOOC COOH OH NH2
H. Oikawa, D. Yamawaki, T. Kagawa and A. Ichihara, Tetrahedron Lett., 1999, 40, 6621.	
Bryostatin 2	HO HO HO
Biological activity: antitumour agent, stimulation of T-cells, activation of protein kinase C, disruption of phorbol ester-induced tumour promotion. *Key steps: (a) aldol and directed reduction steps construct keyanti-1,3-diol arrays; (b) asymmetric Horner-Wadsworth-Emmons condensation.	MeO ₂ C OH OH OH
D. A. Evans, P. H. Carter, E. M. Carreira, A. B. Charette, J. A. Prunet and M. Lautens, J. Am. Chem. Soc., 1999, 121, 7540.	O'', OH
meso- and (-)-Chimonanthine and (+)-Calycanthine	Me
Biological activity: not reported. Key steps: a double Heck cyclisation creates two vicinal quaternary centres with complete stereocontrol.	Me N Me N Me N N Me N N N N N N N N N N N N N N N N N N N
L. E. Overman, D. V. Paone and B. A. Stearns, J. Am. Chem. Soc., 1999, 121, 7702.	Me (–)-Chimonanthine (+)-Calycanthine
(-)-cis and (-)-trans-Clavicipitic Acids	
Biological activity: isolated from culture of Claviceps strain SD58 or Claviceps fusiformis 139/2/1G; biological activity not reported. Key steps: (a) C-4 selective functionalisation of an indole ring via directed lithiation of 1-(triisopropylsilyl)gramine; (b) stereoselective alkylation of Schöllkopf's bislactim ether; (c) PPTS-catalysed dehydrative cyclisation to ageninoindoles	H COOH H COOH

(±)-Eburnamonine Biological activity: not reported. Key steps: intramolecular Diels-Alder reaction of a cyclic imine to a 3-vinyl indole generates the pentacyclic skeleton in one step. The cycloaddition is catalysed by Florisil (magnesium polysilicate). P. A. Grieco and M. D. Kaufman, J. Org. Chem., 1999, 64, 7586. (±)-2-epi-Erythrinitol Biological activity: alkaloid isolated from extracts of Erythrina variegata flowers. MeC Key steps: (a) [1+4] vinyl isocyanate-isocyanide cycloaddition; (b) intramolecular Heck reaction. J. H. Rigby, C. Deur and M. J. Heeg, Tetrahedron Lett., 1999, 40, 6887. (-)-FR901483 Biological activity: immunosuppressant isolated from the fermentation broth of OMe Cladobotrym sp. No. 11231 which acts by inhibition of purine nucleotide biosynthesis. Key steps: a 1,3-dipolar cycloaddition generates a spirocyclic isoxazolidine which is hydrogenated to give an azaspirolactam. B. B. Snider and H. Lin, J. Am. Chem. Soc., 1999, 121, 7778. (±)-Gelsemine Biological activity: not reported. Key steps: (a) aza-Cope rearrangement; (b) Mannich cyclisation; (c) intramolecular Heck reaction. A. Madin, C. J. O'Donnell, T. Oh, D. W. Old, L. E. Overman and M. J. Sharp, Angew. Chem., Int. Ed., 1999, 38, 2934. (-)-Hispanolone and Prehispanolone Biological activity: (a) PAF receptor antagonist; (b) inhibits ³H-platelet activating factor binding to rabbit platelet membranes ($IC_{50} = 4 \times 10^{-6} \text{M}$). Key steps: (a) Pd(0)-catalysed Sonogashira cross-coupling reaction; (b) intramolecular Michael addition. (-)-Hispanolone Prehispanolone W. S. Cheung and H. N. C. Wong, Tetrahedron, 1999, 55, 11001. Oleandolide

Biological activity. Oleandomycin inhibits bacterial RNA-dependent protein synthesis by binding to the 50-S ribosomal subunit and blocking either translocation and or transpeptidation.

Key steps: (a) asymmetric anti-crotylation of aldehydes mediated by TiCl₄ using scalemic crotylsilanes as nucleophiles; (b) Pd(0)-catalysed fragment coupling of an organozinc reagent with an enol triflate.

T. Hu, N. Takenaka and J. S. Panek, J. Am. Chem. Soc., 1999, 121, 9229.

Phytuberin	
Biological activity. (a) metabolite induced by stress on potato stems and tobacco leaves; (b) modest antifungal activity.	
Key steps: (a) alkoxide-directed addition of dichloromethyllithium; (b) alkoxide-mediated hydrolysis of a dichloromethyl alcohol.	AcO
G. A. Kraus and X. Wang, Synlett, 1999, 9, 1395.	
(+)-Polyoxin J and (+)-Polyoxin L	R
Biological activity. (a) antibiotic; (b) specific action against phytopathogenic fungi and human fungal pathogens.	O OH O COOH
Key steps: addition of vinylmagnesium bromide to an L-threose derivative.	H ₂ N O OH NH ₂ N O OH OH
K. Uchida, K. Kato and H. Akita, Synthesis, 1999, 9, 1678.	R=Me Polyoxin J R=H Polyoxin L
Reveromycin B	
Biological activity: (a) antibiotic; (b) inhibits mitogenic activity induced by the epidermal growth factor (EGF) in a mouse epidermal keratinocyte.	HO ₂ C O
Key steps: (a) one-pot Julia olefination; (b) Wittig reactions; (c) Horner-Wadsworth-Emmons reaction; (d) coupling between a Weinreb amide and an alkyne.	HO ₂ C O ₂ H
T. Masuda, K. Osako, T. Shimizu and T. Nakata, Org. Lett., 1999, 1, 941.	
Squamotacin	ii ji
Biological activity: cytotoxic selectivity for the human prostate tumour cell line.	HO,,
Key steps: (a) Sharpless asymmetric dihydroxylation reaction; (b) Sharpless asymmetric epoxidation reaction.	
S. C. Sinha, S. C. Sinha and E. Keinan, <i>J. Org. Chem.</i> , 1999, 64 , 7067.	HO,,,
Tartrolon B	
Biological activity: broad spectrum antibiotic against Gram-positive bacteria.	OH O
Key steps: (a) two aldol connections; (b) esterifications to create first a dimer and then the 42-membered diolide ring.	Na ⁺ O Na ⁺
	O OH
M. Berger and J. Mulzer, J. Am. Chem. Soc., 1999, 121 , 8393.	
(–)-Tetrahydrolipstatin	
Biological activity: potent and irreversible inhibitor of pancreatic lipase.	!!
Key steps: olefin metathesis of an acrylate ester.	CHO O O O
	H H

A. K. Ghosh and C. Liu, Chem. Commun., 1999, 1743.

(-)-Tetrahydrolipstatin	
Biological activity. potent and irreversible inhibitor of pancreatic lipase.	H
Key steps: oxazoline N-oxide-mediated [2+3] cycloadditions.	,,,,,,,,CHO
,,	
O. Dirat, C. Kouklovsky and Y. Langlois, Org. Lett., 1999, 1, 753.	
Tolyporhin A	но.
Biological activity: reverses multidrug resistance in a vinblastine-resistant	
population of human ovarian adenocarcinoma cells.	HO HN
Key steps: (a) C-glycosidation of an acetyl glycoside with a silyl ketene acetal; (b) use of thioamides in the construction of the porphyrin ring system.	HO N HN
	NH N= H OH
	Ö Ö OH
W. Wang and Y. Kishi, <i>Chem. Lett.</i> , 1999, 1, 1129.	ı
Tricolorin A	
Biological activity: weed growth inhibitor and cytotoxic activity against P-388 human breast cancer cells. Tricolorin A was isolated from <i>Ipomoea tricolor</i>	OH E
(convolvulaceae), a plant used in traditional Mexican agriculture as a weed controller.	HO HO O
	o o
Key steps: ring-closing metathesis to generate the macrolactone ring. Tricolorin G and jalapinolic acid were also synthesised.	
A. Fürstner and T. Müller, J. Am. Chem. Soc., 1999, 121, 7814.	HO 700 0
(±)-Versicolorin A	но
Biological activity: intermediates on the aflatoxin biogenetic pathway.	
Key steps: two silyl triflate-mediated cyclisations create the dihydrobisfuran ring.	HO O HO H ~
They may to the major to the transfer of the same the same the same than	
	HO
T. L. Graybill, E. G. Casillas, K. Pal and C. A. Townshend, J. Am. Chem. Soc.,	
1999, 121, 7729.	
(±)-Virantmycin	
Biological activity: antiviral.	
Key steps: heterocyclic ring generated by the intramolecular Diels–Alder cycloaddition of a chloroalkene to an α-azaxylylene generated by elimination of a	но
2-chloromethylaniline derivative.	N OMe
	" 🕌
H. Steinhagen and E. J. Corey, Org. Lett., 1999, 1, 823.	
Xerulin	
Biological activity: inhibitor of the biosynthesis of cholesterol in HeLa S3 cells	
$(ID_{50} = 1 \mu g g^{-1})$ without being cytotoxic.	
Key steps: (a) Fritsch-Buttenberg-Wiechel rearrangement; (b) Pd(dba) ₂ /CuI-catalysed Cadiot-Chodkiewicz reaction; (c) Wittig reaction.	
i oquon/2/Cui-catatyseu Cautot-Citouniewicz teacuofi; (c) witiig reaction.	0 1
V. Circuland D. Deffalson, Contant 1000, 9, 1227	I .

K. Siegel and R. Brückner, Synlett, 1999, 8, 1227.